An Automatic Mosaicking Algorithm for the Generation of a Large-Scale Forest Height Map Using Spaceborne Repeat-Pass InSAR Correlation Magnitude

نویسندگان

  • Yang Lei
  • Paul Siqueira
چکیده

This paper describes an automatic mosaicking algorithm for creating large-scale mosaic maps of forest height. In contrast to existing mosaicking approaches through using SAR backscatter power and/or InSAR phase, this paper utilizes the forest height estimates that are inverted from spaceborne repeat-pass cross-pol InSAR correlation magnitude. By using repeat-pass InSAR correlation measurements that are dominated by temporal decorrelation, it has been shown that a simplified inversion approach can be utilized to create a height-sensitive measure over the whole interferometric scene, where two scene-wide fitting parameters are able to characterize the mean behavior of the random motion and dielectric changes of the volume scatterers within the scene. In order to combine these single-scene results into a mosaic, a matrix formulation is used with nonlinear least squares and observations in adjacent-scene overlap areas to create a self-consistent estimate of forest height over the larger region. This automated mosaicking method has the benefit of suppressing the global fitting error and, thus, mitigating the “wallpapering” problem in the manual mosaicking process. The algorithm is validated over the U.S. state of Maine by using InSAR correlation magnitude data from ALOS/PALSAR and comparing the inverted forest height with Laser Vegetation Imaging Sensor (LVIS) height and National Biomass and Carbon Dataset (NBCD) basal area weighted (BAW) height. This paper serves as a companion work to previously demonstrated results, the combination of which is meant to Remote Sens. 2015, 7 5640 be an observational prototype for NASA’s DESDynI-R (now called NISAR) and JAXA’s ALOS-2 satellite missions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Forest Height Using Spaceborne Repeat-Pass L-Band InSAR Correlation Magnitude over the US State of Maine

This paper describes a novel, simple and efficient approach to estimate forest height over a wide region utilizing spaceborne repeat-pass InSAR correlation magnitude data at L-band. We start from a semi-empirical modification of the RVoG model that characterizes repeat-pass InSAR correlation with large temporal baselines (e.g., 46 days for ALOS) by taking account of the temporal change effect o...

متن کامل

Experiences with Multiresolution and Multifrequency InSAR Height Model Generation

Interferometric synthetic aperture radar (InSAR) has become a broad field encompassing the use of both airborne and spaceborne sensors operating at a range of wavelengths and resolutions. This paper derives general conclusions from experiences at the Remote Sensing Laboratories of the University of Zürich with a variety of airborne and spaceborne InSAR sensors. Results from multiple systems ope...

متن کامل

Tree Height Estimation from Multi-temporal Ers Sar Interferometric Phase

Multi-temporal sets of ERS-1/2 SAR interferometric (InSAR) phase have been evaluated at several test sites in Europe for tree height estimation. Atmospheric artefacts affected a large number of image pairs. These were generally well compensated in case of large-scale artefacts over small forests, whereas for large forests their effect could only be assessed. Hence, the amount of pairs utilizabl...

متن کامل

The Impact of Temporal Decorrelation over Forest Terrain in Polarimetric SAR Interferometry

While polarimetric SAR interferometry (Pol-InSAR) techniques are today well established, a critical issue in the case of repeat-pass spaceborne measurements is temporal decorrelation, caused by changes within the scene occurring in the time between the acquisitions. Indeed, temporal decorrelation has been identified as the most critical factor for a successful implementation of Pol-InSAR parame...

متن کامل

Baseline Estimation Algorithm with Block Adjustment for Multi- Pass Dual-antenna Insar

Baseline parameters and interferometric phase offset need to be estimated accurately, for they are key parameters in processing of InSAR (Interferometric Synthetic Aperture Radar). If adopting baseline estimation algorithm with single pass, it needs large quantities of ground control points to estimate interferometric parameters for mosaicking multiple passes dual-antenna airborne InSAR data th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015